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ABSTRACT

There is loss of efficiency when an estimated noise covariance matrix is

used in the place of the unknown true noise covariance matrix in the construc-

tion of the optimum filter for signal detection. In the case of detecting a

single signal specified by a real or a complex vector, we investigate the extent

of this loss by obtaining an exact confidence bound for the realized signal to

noise ratio. We also give an estimate of this ratio which is useful in optimum

selection of features. Some of these results are extended to the case of dis-

crimination between a number of given signals.
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1. INTRODUCTION

Reed, Mallet and Brennan (1974) studied the loss of power in signal detec-

tion when the noise covariance matrix is unknown and the estimated matrix from

sampled data on noise is used in the construction of the optimum filter or the

linear discriminant function. This was done by computing the expected value

of the signal to noise ratio based on the estimated filter and comparing it with

*the corresponding ratio when the covariance matrix is known. In this paper,

we extend the study of the above authors in several directions.

An exact confidence bound is provided for the realized signal to noise ra-

tio when an estimated filter is used. A test is given for examining whether

a given set of features is sufficient for signal detection. A criterion is pro-

* vided for optimum selection of features. Finally, the problem of discrimination

with multiple alternative signals is discussed. We consider both the cases where

the signal is represented by a real or a complex vector.

The following notations are used. A' denotes the transpose of a matrix

A when its elements are real and A* the conjugate transpose of A when its ele-

*ments are complex.

i) X - N (pZ), i.e., a real p-vector X has a p-variate real normalp

distribution with the probability density function (p.d.f.)

,- (2R) -P/21ZI- exp(ii

ii) X - N (uZ), i.e., a complex vector X has a p-variate complex nor-
p

mal distribution with the p.d.f.

""( f)-PI-ext (x-0'* (X-01. (1.2)

iii) Y N (M,,V), i.e., a real r x s matrix Y has the p.d.f.
r,s
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(27)-rs/2iZ,-s/21v-r/2exp PjtrZ-I(y-M)V-I(y-M)']. (1.3)

iv) Y ~ N ,s(M,Z,V), i.e., a complex r x s matrix has the p.d.f.

01) -rs I Z - I V I-r exp [ -trZ- I (Y-M) V- I (Y-M) * ]. (1. 4)

v) S - W (f,Z), i.e., a real p x p positive definite matrix S has the

Wishart distribution on f degrees of freedom with the p.d.f.

2-  [F (f/2)]-l SZ- exp(-trZ-is) (1.5)p

where

(a) = np(p-1)/ 4 P a i-l

vi) S - W (f,Z), i.e., a complex p x p positive definite matrix S has
p

the complex Wishart distribution with the p.d.f.

[r (f)]-lIZI-flvlf-Pexp(_trE-is) (1.6)
p

where

(a) = Ip(p-l)/2 ' (a-i+l).
P i=l

vii) S - W(f,Z), i.e., a real p x p positive definite matrix has the
p

p.d.f.

izr-f/2isi(f-P- 2)/2g(- trZ- s). (1.7)

viii) S ~ Wg(f,Z) i.e., a complex p x p positive definite matrix S has
p

the p.d.f.

jZ -fjsjf-Pg(-trZ-is). (1.8)
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2. SOME MULTIVARIATE DISTRIBUTIONS

In this section we derive some new multivariate distributions which arise

in the study of problems of signal detection. The actual applications are dis-

cussed in Section 3.

Consider the p x p positive definite (p.d.) matricesSi 11 S 21 1
* ,(2.1)

partitioned by the first r and the rest s = p - r of rows and columns, the Schur

complements of order r x r

-1 -1

S1.2 11 Sl - S12 S22S21' El.2  E 11 E 12 E22 21 (2.2)

and the regression coefficients of order r x s

S12S22 , a E 12 E22. (2.3)

We have the following lemmas which follow on standard lines (see Rao (1973, pp.

538-539) and Srivastava and Khatri (1979, p. 79)).

Lemma 1. Let S - W (f,Z) where p = r + s and S SI b.2' E.2'b and a be as

defined in (2.1)-(2.3). Then the following hold:

1.) S1.2 and (b,$2 2) are independently distributed with

SS1.2 W r(f-s, Z1 .2) (2.4)

$ 22 -W (f , E22) (2.5)

and the conditional distribution of the r x s matrix b given S22 is
k

K ->.
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b - N (B,Z - (2.6)
r,s 1.2' 22 ~ 26

" 2.) The unconditional (marginal) p.d.f. of b obtained by integrating over

S is
S22

r (f+r""s -2-- J -f/21 l-s/2 - (-i ) ,Z112 (b-6) 1-(f+r)/2

1 rs/2 sr ST) I221 1.21 22 - 1.

which we denote by

T r,s (a,f,1.2 ',z 22) . (2.7)

2- where 1. and l2 represent symmetric square

0 f I  1.2 (-)22 ,  1.2 22

roots, then

ST (o,f,I ,s). (2.8)r,s r s

3.) If u = (I +b b') b = b (I +b1 then the Jacobian of the trans-
ru 11 1 sL,-rsl/

formation from u is rand hence the p.d.f. of

u, derived from (2.8), is

r f+r
)(f-s-l)/2

rs/2 f r1 rS

which we denote by

U (f+r (2.10)Ur, s 2 )

4.) If s > r, the p.d.f. of B = (I +blb')-I, derived on standard lines, is

- .- -.-..- ..--..-. *-..- .- -- - - - - - - - -- " -r-
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[ r(f+r-s , s  1lIB I (f -s-l)/211_-Bj ( s - r - 1 ) / 2

where

a (a)' r(b)

ra r (a+b)r

which is the r-variate beta distribution denoted by

f+r-s sB r 2 (2.11)r 2 '2 "

If b2 = (b- )22 then the p.d.f. of B0 = (z +b b )
-I is

222' 1.2 2 b~

r( f+r-s,2 s 1 - l E 1 . 2 ( f - l ) / 2 j B O j ( f - s - l ) / 2 z -l l. - B i ( s - r - l ) / 2

4r 2 2/ i 1 2  ID I 1  2 -0l

which will be referred to as

f+r-s s -1r 2' 1.2 ) (2.12)

Lemma 2. If S - W (f,Z) where p= r + s, then SI. 2 and (bS 22) are inde-

pendently distributed, and the distributions of the various statistics considered

in Lemma 1 are as follows.

1.) S 1 .2 - Wr(f-r,1.2 ). $22 Ws (f Z
2 2) (2.13)

The conditional distribution of b given S2 2 is

b-N r,s(,Z.2S22) (2.14)

2.) The marginal distribution of b is

b ~ T r ( ,fzI.2, 22)b-s
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with the p.d.f.

r(r)* -i -(f+r)
rs (f+r) 2 j-f 1 -s Z-1 + (b-s) 71 2 (b-6) . (2.15)rs -(f) 1.211 22 1.2

bI = 1.2 (b-B)Z22 - Tr,s (o,f,rI rls (2.16)

3.) If u =bl(I+b b (I +b b*) bl, then its p.d.f. is
1s1r 11 1'

rs(f+r) I
1I u *1f-s

nrsr (f) r
s

which is denoted by

u - U (f+r). (2.17)r,s

-1
4.) If s > r, the p.d.f. of B = (Ir+blb*) , derived on standard lines, is

[B r(f+r-s,s)]-llBJ f-s 1-BIs-

which will be referred to as r-variate complex beta distribution

B (f+r-s,s). (2.18)I r

Writing b = (b-622' the p.d.f. of B0  (Z +b b*) obtained by

a transformation from (2.15) is

B (f+r-ss)} l 1 2fIBof-s. -
1

. - Bo0 S-r
r 1.2 1.

which will be referred to as

3 (f+r-s,s; i1 (2.19)
r 1.2

r4 - - - - - - - - -



7

14

3. MAIN THEOREMS

In this section, we use the results of Section 2 to derive distributions

of some functions of a p x r matrix A whose columns represent given signals and

f S the estimated noise covariance matrix of order p x p. These distributions

are used in the next section for drawing inferences on the basis of observed

data in signal detection. First we consider the real case and quote the corre-

sponding results for the complex case in the remarks following the theorems.

Theorem 1. Let A be a p x r given matrix of rank r (< p/2) and S ~ W (f,Z).

Define the r x r matrices

SA = (A'S-A) - , -- (A' EA) (3.1)

-l l- -1-1I'A

B = E S (A'S ES A) S (3.2)
A A(.

Then S and B are independently distributed with

SA Wr (f-p+r, :A) (3.3)

B B ( f+r-s s (3.4)

where the B distribution is as defined in (2.11) and s p - r.
r

Proof. Let be a p x s matrix of rank s(=p-r) such that A = (A A )

is nonsingular and AA = 0. Then L'S, W (f ALEAo ). Writing
1 O'O p 1 0 0

* A"S ^ = , A 0  =

11 1 22V21' 1.2 11 12 22 21

I 
2
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and using Lemma 1

V1 .2 - Wr(f-p+r, el. 2 ) (3.6)

(I+blbj)-1 - B (f+r-s, s (3.7)1 r v 2 2 ) 37

Further V1.2 and (I+b b')-' are independently distributed. Now

V1 .2 - - AISA (YSA)-lasA

= A'AS A A

1.2 Aa

Then from (3.6), SA = (A'A)v 1 .2 (A'A) I has the desired distribution (3.3).

Further, using the formula

Vl I+ V- I  (I : -i-

S1 1.2 v12v22)-Il V -I V2
V2 2  V22 V2221

we find, after some computations, that B as defined in (3.2) is the same as

(I + b b')- with b as in (3.5). Then (3.7) establishes (3.4). Theorem 1
1 1 1

is proved.

Remark 1. If S - wg(f,E) as defined in (1.7), then S and B as defined
p

in Theorem 1, (3.1) and (3.2), are independently distributed. Further, B has

the same p.d.f. (3.4) as in Theorem 1 independently of g, while the same is

not true for S,.

Remark 2. Let A be a p x r complex matrix of rank r(< p/2) and S - W (f,!).
p

Then
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S= (A I) W (f-p+r, 7') (3.8)
r

and

B S1 (, I S A) -I- B (f+r-s,s). (3.9)
AB A A r

Further S and B are independently distributed.

Remark 3. If S is complex and has the distribution Wg(f,E), then S, and
p

B as defined in (3.8,3.9) are independently distributed. Further, the distri-

bution of B is as in (3.9) independently of g, while the same is not true for

S.

Theorem 2. Let B be p x p positive definite matrix such that

f f
B- ~ 1 2B - B p( 2-, 2-; A), 0 < B < A.

Consider the partitions

A= A B=

A' A21 A 2) B 21 B 22,

where A and B are r x r matrices, and the Schur complements A2. and B2, I .

Then the statistics Bill B2. and

U=(A2. B 2  (B - A -1 [B1+ (A -B )1] (3.10)
2= 1 2-1 21 2 1A11B11) 11 1 11

are independently distributed. Further

fl f

B B ( ,  A 0 < B < A (3.11)

f1-r f2

B.2 Bpr , f2 A) 0 < B2  < A2 1 , (3.12)

1- - 2121 2l
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U2
U Upr,r(- as in (2.10). (3.13)

The results of Theorem 2 were established by Khatri and Pillai (1965) when

A = I . Their proof can be easily extended to our case by noting that
p

JAI = IA1I IA21 IBI =BB111 B2

IA-B t = A1 1-B 11 Am.-B 2 . 1 1 Ip-r-U'!

and then computing the necessary Jacobians of the transformations.

Remark 4. In the complex case, let B and A-B be Hermitian positive defi-

nite matrices such that

B - B (fl f 2 ; A).

Then, B B and U as defined in Theorem 2 are independently distributed.
11l 2.1

Further

B1 B (fl f2 ; A 11) (3.14)11 r l'2 1

B2 (f -r,f 2 ; A2 1 ), (3.15)

and

U - U (f2 ) as in (2.17). (3.16)

Theorem 3. Let X and Y be independent univariate gamma, G(l,m), and beta,

B (m-c+l,a), variables Tith the p.d.f.'s
1

I -x m-1
(m) x , x > 0, m > 0 (3.17)

and



1-. m-C,(ly)a-l,

a(m-c+la) y 0 < y < i, a > 0, m-c+l > 0. (3.18)

Then the p.d.f. of Z = XY is

-z M-i
e z r(a+m-c+1) T(a,c; z) (3.19)
P(m) r(m-c+l)

where T is the confluent hypergeometric function of the second kind defined by

T(a,c; z) = i l t~ c-a-i
ta- l+tt exp(-zt) dt (3.20)

(see Erdelyi et al (1953, p. 255) or Lebedev (1972, p. 268)).

Proof. The result is obtained by writing the joint distribution of X and

Y and making the transformation

Z = Xt, t = Y/(I-Y).

Remark 5. The function T (a,c; z) exists for all a and c and has the fol-

lowing representations in infinite series

= r'(-c) (c-1) 1-c

P(acz) =r(l-c) iFl(a,c; z) + r(a) z 1 Fl(l+a-c,2-c; z)V~~~)=r(l+a-c) 11ra

provided c # 0,-l,-2,...and r(c+l) = cr(c) for any c # 0,-,l....

=(an+lz) =(_)n kz (a+k) - y(l+k) - y(n+l+k) + log z]
r(a-n) k=0 k!(n+x)!

n-i (-l) (n-k-l) !(a-n)k k-n+ 1 k! kz-
r(a) k=O

if n 0,1,2,... and a # 0,-i,-2,..., where y(x) - r'(x)/r(x), and the last term

is zero if n =0.
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If a -m, m = 0,1,..., and c = n + 1, n = 0,1,..., then

T(-m,n+l;z) (-I)m (m+n) F (-m n+i;z)n! 1F1 ( - '~ z

where

Fi(ac;z) r()c e ztta-i (lt) c-a-ldt.F1( a c z  F(a)mc-a)

4. TESTS FOR ADDITIONAL INFOR11ATION

Let us consider the case of discrimination of a given signal from pure noise.

A question of some practical importance is the number of features to be measured.

Let us consider a signal 6 with p = r + s features and an estimate f- s of the

unknown Z based on f degrees of freedom (or f samples from noise process) in

partitioned forms

1i ii 12 11 S12

= I l2  , S= (4.1)
2 k21 Z22 S21 $22/

where i is an r-vector, E is an r x r matrix and so on.

The signal to noise ratio based on 6 (all the features) is S'- 6 while that

based on 62 is 2 2262. If 61 is redundant, then

0 = 6'- 16 -16
- 2 22 2

= (61- 62) I21(61-862), B = E12 22 (4.2)

which implies that 61 B6 2' We develop a test of the null hypothesis

H0: 61 = 2 (4.3)

*, _ . . . * -. . >v,, .'.-. " " .' _
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on the basis of the information provided by S.

We first consider the case where 6 and S are real. From Lemma 1, S and

-I
b =S S1 are independently distributed for given S with

12 22 22

S1 . 2  Wr (f-s,Z 12),

b - N ( ,z S-i (4.4)r,s 1.2' 22

Then from the standard MANOVA theory (see Rao (1973, pp. 547-550) and Srivastava

and Khatri (1979, pp. 166-172)), the test statistic for testing H0 in (4.3) is

2 f-p+l ( 1-b62 )'SI 1 2(61-b62 )T " (4.5)• r y-1

2S22 2

2
which has Hotelling's T or F distribution on r and (f-p+l) degrees of freedom.

An alternative way of computing (4.5) is

T2 f-p+1 (4.6
T2 = -,l- -11. (4.6)

r
222 2

The test (4.5) is important since in practical applications with an estimated

covariance matrix, inclusion of too many features may reduce the power of dis-

crimination (see Rao (1971)).

Let us consider the case of k signals represented by the columns of a p x k

matrix A. Writing

(4.7)

A2

where A is r x k matrix, we ask the question whether A1 is redundant. The test

S- - . . - . "2 . " __
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for this again follows from the general MANOVA theory (see Rao (1973, pp. 547-550)

and Srivastava and Khatri (1979, pp. 166-172)). The likelihood ratio test gives

the A criterion

Is1 1

IS+(AI-bA2)(AIS21 A)-l(AI-M20
12 12 22 A2) ( 1-b 2)

ISI IS221
S+AA, s22+A2A;! (4.8)

which is distributed as

A(r,f-s,k). (4.9)

Several approximations for computing the significance of an observed value of

A are described in Rao (1973, pp. 555-556) and Srivastava and Khatri (1979,

pp. 176-186).

Remark 6. When S has complex Wishart distribution, the corresponding test

- for H 0: *- 6= 22262 is

(6 •b -1i6 b

T2 _f-p+1 (&lb52)*Si.2(&lb62)

T 2 (4.10)
r *-i

62 S22 2

which has complex Hotelling's T2 or F-distribution with 2r and 2(f-p+l) degrees

of freedom. An alternative way of computing (4.10) is

S2  rf-p+l [*s-l - 11.

2 22 2

For the case of k signals represented by the columns of a p x k matrix

= A the likelihood ratio test for H 0:A 222 2 is

22
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A = S.21/ISI.2+( I-b2 )(1 2 S2 A2) (Al-bA2)

= (ISI/IS+AA1I) (Is2 2I/!s 22+2A 2I). (4.11)

which is distributed as

A(2r, 2(f-r), k).

5. LOSS DUE TO ESTIMATION OF E IN DETECTING A SIGNAL

If E, the noise covariance matrix, is known, then the optimum filter for the

- detection of a signal 6 is '-1IX (or 6* 1 X) when X is a real (or a complex)

vector observation. I [In the sequel we consider both the real and complex cases

indicating the expressions for the complex case within brackets as above]. The

signal to noise ratio, which is an index of the efficiency of discrimination,

n in such a case is 6,-1i6 (or 6*-l6). If E is not known but an estimate f-1S

*based on f degrees of freedom is available, we may use the estimated filter

f-'S- X (or f6*S-I X). The signal to noise ratio in such a case is

/SS- *) 2-1 )2

P(SI) = 6 1 6) , or P(s,IZ) = ( 1 6 (5.1)

By the Cauchy-Schwartz inequality this is less than

6'E- 1 (or 6*7-i1) (5.2)

*_ so that there is loss of information in using f-S instead of E.

'- The efficiency of the estimated filter can be examined by considering the

u.- ratio of (5.1) to (5.2)
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(S-I )2 (6S-I) (5.3)
B , or

(6,'-l6)(6,6-l1 s-l 6) (6*Z- M( S- s-S )

r Using Theorem 1, (3.4), by putting r = 1 and s = p-1, the distribution of (5.3)

*is obtained as univariate beta

B 2 , 2), (or Bl(f-p+2, p-1)). (5.4)

The distribution (5.4) in the complex case was earlier obtained by Reed, Mallett

and Brennan (1974). By computing the expected value of the distribution, they

provided the rule f = 2p for maintaining an average loss ratio of better than

half. But the distributions (5.4) can be used in other ways. For instance,

0 by using incomplete beta tables one can determine the value of f, the number

of samples on noise for estimating Z, to ensure for any given p an efficiency

larger than any given value with an assigned probability.

The signal to noise ratio (5.1) for any realized value S depends on the

unknown Z, which makes it difficult to assess the performance of any particular

estimated filter. We suggest two ways of drawing inference on (5.1) in terms

of known quantities.

First, we may find a constant c such that

E [p(S,Z)-cf6's- 1 ]2 , (or E[ S,Z)- 6f6) (5.5)

is a minimum. The optimum c is

r.Er p(S,Z).6'S 1 61 E [ SZ-*- 1
-1 2 (or * (5.6)

fE(6'S 6) fE(6 S-I)

which is easily evaluated using the independence of p(S,Z) and S'S 6 (or b(S,Z)

and 6*S- 6) and the distributions derived in Theorem 1, (3.3) and (3.4) or (3.8)

and (3.9), by choosing r = 1 and s = p-l. The value of c turns out to be



17

(f-p+2)(f-p-3)
f(f+l) (5.7)

2 -1in either case. Then defining the estimated Mahalanobis distance D = f6'S 5
p

(or fS S 6), we can use the known quantity

(f-p+2)(f-p-3) D2  p-(1 P - _ 2 (5.8)
f(f+l) p f.( .ffp)(I  p

as an approximation to P(S,Z)(or (S,E))for judging the efficiency of an esti-

mated filter. Note that if f is not large compared to p, then D2 overestimates
p

the efficiency of discrimination.

The formula (5.8) is also useful in examining the gain in discrimination

efficiency by increasing the number of features. For instance, the estimated

signal to noise ratio with a subset of r features out of p, represented by a

vector 6 is

(f-r+2)(f-r-3) 2 (59)
f(f+l) r

whr 2  f6' 16 o -lwhere D 1 f 11 (or f6Sl I with SI as the partition of S arising out
r 2

of the first r columns and r rows. If p > r, then D2 > D2 but (5.9) may be
p- r

* > or < or = (5.8), and an appropriate decision may be taken depending on the actual

relationship. It is possible that with an estimated S, the inclusion of a large

PF number of features may decrease the discrimination efficiency, a phenomenon

observed in several multivariate situations (see Rao (1971)).

A more satisfactory approach is to determine a confidence bound for p(S,),

(or 5(S,Z)) in terms of known quantities. This is done by using the distribu-

' tion derived in Theorem 3 of Section 2.

From (5.4)

Y = i( yB or Bl (f-p+2,p-1) (5.10)
1 1 2 2 Y, o'.6.. , -I 6* -l
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K •as beta variables, and

L

_X G(, f p+l) ( G(l,f-p+l) (5.11)6I- 2 26S-1 6

as gamma variables using the notation of Rao (1973, p. 164), and, further, X

and Y (or X and Y) are independent. Then from Theorem 3

I -f P(SE)~ fP(SZ)
2 2 or Z = XY 2 (5.12)Z Y= D2 D2

P p

where D2 = fS-16 (or fS -1 6), has the confluent hypergeometric distribution (3.19)

1 e -z -i r(a+m-c+l) T (ac; z) (5.13)

r(m Z r(m-c+l)

which is independent of the unknown Z with

M = ,2 a = 2 , c = !, (or m = f-p+l, a = p-i, c = 0). (5.14)
222

If z (or z ) is the lower a % point of the distribution, then

P(Q(S,E) >2z D 2) 1-at r P(O(S,Z) > -2 D 2 1 (5.15)

so that

2z a2' CL 2~
p(SZ) >-z D2  or (S,.) > - D (5.16)

provides a lower bound to the realized signal to noise ratio at a confidence

level of (1-a)%.

The equation satisfied by z is

rML
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7 (f+l. Za/Y
___- -_ (f-p) /2  (p-3)/ 2  1 -x (f-p-1)/2

-p+2 y (1-Y) dy) (l-yldy x dx

2 2 2

'aa
and 2 is

"01 r (f+l) yf-p+l(_p- d Iy/ (fiPl - -

Jo r(p-l)r(f-p+2) (Y) 0  r(f-p+l)

The values of z (or 2 ) can be found by a suitable computer algorithm. For

aa

instance, the multiplying coefficients (see 5.16) for the observed Mahalanobis

distance to provide 50% and 95% lower con;idance bounds to the realized signal

to noise ratio are given below for p = 4 and f = 8, 12 and 16.

2z /f a /f

f 50% 95% 50% 95%

8 .345 .075 .381 .141

12 .525 .188 .553 .283

16 .631 .281 .649 .377

Detailed tables will ap-eav in a later communication.

6. LOSS DUE TO ESTIMATION OF Z IN MULTIPLE DISCRIMINATION

Consider the rrohlem of identifying a received message as noise or one of

r possible signals 1 .-. 6 r which we represent by a p x r matrix A =r

Further, let X be a vector of observed features with covariance matrix Z and

S"E(X) - 6 when the i-th signal is transmitted, i - l,...,r and E(X) - 0 for

noise. Then the overall efficiency of discrimination using X can be judged by

a function of the eieen values of
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AA' (or AA ) with respect to Z (6.1)

which are the same as the eigen values of

'I - 1 (or A* -l ). (6.2)

This provides a generalization of the signal to noise ratio ' -15 (or 6 Z-i )

in the case of a single signal.

If the noise has N (0,E) distribution, then the decision function for the
p

detection of r signals is based on the sufficient statistics

6"Z-1 X (or *i 1 X), i = 1,...,r (6.3)
1 i

* which can be written as the discriminant vector Y = A'- 1 X (or AZ-I X) with the

covariance matrix A'Z-IA (or A*-1 A), and E(Y) = A'-1 6 (or A 1 5.) for the' 1

i-th signal. The efficiency of discrimination in using Y instead of X, using

the formula (b.1) depends on the eigen values of

(A'-I)('-I)-I(A'-IA) with respPct A'Z- 1A (6.4)

(or with A in the place of A), which are the same as those for X as expected.

If Z is not known but an estimate f-1S is available, then the estimated discrim-

inant vector is

A -1 *-
Y = A'S-X (or A S x) (6.5)

and its efficiency depends on th- eigen values of

B = (A'S-1 A)(A'S-Es- A) -AI'S- A (6.6)

*

(or with S' replaced by S ), which is a generalization of p(S,Z), (or 1(S,Z))

as considered in (5.1).
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In Theorem 1, we found the distribution of the matrices (A'S -\) and

WE-A) B(A'- in the case of real variables, and of the matrices (A*S-A)

and (A Z- A) B(A*Z-A) in the complex case. We use these distributions in ex-

amining the realized efficiency through the estimated discriminant vector.

For this purpose, we consider two particular functions of the eigen values

Sof B, one of which is the sum

-1 2 -1 -l1 -1Z = tr B = tt [ (A'S A) (A'S ES A)

= S-A(A'S- 1 Es- 1 A)-1 A'S-1 6. (b.7)
1 1 1

(or with 6' and A' replaced by 6. and A ) and another is the product
i 1

Z2 - IBI = A . (or A* SAI ) (6.8)l A's- Zs- ' A A S-1ES-1A l

* Using Theorem 2

EZ f-p+2r) T-1 S. (or 6*E 61)]
f-p+2r tr * -I

- f-+2r, [tr(AE-IA)(or A*- A)] (6.9)f+r

and

f-p+2r-i+l (IAZ2 l2)
E(Z 2 ) = [ f-r-i+ or-I or A*-I . (6.10)

i f'r- i+l

The formulas (6.9) and (6.10) enable us to choose a suitable value of f for given

p and r to keep the average loss at a desired level.

-e
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